حميدرضا اميري

عددهای اول و تاریخچهٔ آنها

عدد صحیح 1 > p اول نامیده می شود، هرگاه بر هیچ عدد صحیحی غیر از 1 و 1 و p و p بخش پذیر نباشد. به بیان دیگر، عدد صحیح p > 1 اول است. اگر نتوانیم آن را بهصورت حاصل ضرب دو عدد صحیح کوچکتر از خودش بنویسیم.

عدد صحیح n >۱ که اول نباشد، مرکب نامیده می شود (عدد ۱ نه اول و نه مرکب در نظر گرفته می شود). بنابراین ۲، ۳، ۵، ۷، ۱۱ عددهای اول هستند، ولی ۲×۲=۴، ۳×۲=۶، ۴×۲=۸ ۵×۲=۰۱ اول نیستند.

یک عدد ۵ رقمی بر ۳ بخش پذیر است، وقتی که مجموع ارقامش بر ۳ بخش پذیر باشد.

🚕 **بحث:** این جمله را می توان به این صورت بازنویســـی کرد: «اگر مجموع ارقام یک عدد ۵ رقمی بر ۳ بخش پذیر باشد، آنگاه آن عدد بر ۳ بخش پذیر است.»

بنابراین ما میتوانیم فرضیات و نتایج را تفکیک و آنها را بهصورت زیر بازنویسی کنیم:

- $a_{\neq} + o$ i=۰,۱,۲,۳,۴ و برای هر s = n برای هر s = n الف) فرض کنیم s = n برای هر s = n برای هر s = nبه طوری که: $a_{\epsilon} + a_{\tau} + a_{\tau} + a_{\tau} + a_{\tau} = \mathsf{Tt}$ عددی صحیح است.
- (این حقیقت که n عددی صحیح است، یک فرض ضمنی است، زیرا مفهوم بخش پذیری فقط برای عددهای صحیح تعریف شده است.)
 - ب) عدد n بر۳ بخش پذیر است، یعنی n=۳s که s عددی صحیح است. از هر دو بخش این اثبات می توانیم نتیجه بگیریم که الف = ب است.

	لغتها و اصطلاحات مهم
1. Digit	رقی
1. Digit 2. Divisible	ىخشىندىر
3. Discussion	
4. Statement	
5. Rewrite	بازنویسی
6. Separate	جدا کردن، تفکیک کردز - جدا کردن، تفکیک کردز
7 Hypothesis	ف.خ.ها
8. Conclusions	نتاح
9. Integer number	שנו סביב
10. Implicit	ضمنی ۔ التزامر
11. Expression	عبارت ۔ بسط
12. Algebraic	
13. Set	مجموعه
14. Subset	نر پرمجموعه
15. Unordered	نامرتب
16. Distinct	مجـــزا، دو به دو متمایـــز
17. Notation	نماد
18. Equal	مساوى
19. Braces	آکــولاد
20. Cardinlity	عدد اصلــی
21. Collection	گداپ
22. Describe	توصیف کردز
23. Superset	اَبرمجموعــه

Primes and their history

An integer p>1 is called a prime if it is not divisible by any integer other than 1,-1, p and -p. Another way of saying this is that an integer p>1 is a prime if it cannot be written as the product of two smaller positive integers. An integer n>1 that is not a prime is called composite (the number 1 is considered neither prime, nor composite). Thus 2,3,5,7,11 are primes, but 4 = 2.2, 6 = 2.3, 8 = 2.4, 9 = 3.3, 10 = 2.5are not primes.

EXAMPLE.

A 5-digit number is divisible by 3 when the sum of its digits is divisible by 3.

- Discussion: This statement can be rewritten as: If the sum of the digits of a 5-digit number is divisible by 3, then the number is divisible by 3. Thus we can separate hypothesis and conclusions and rewrite them as follows:
 - ▶ A: Let n be an integer number with $n=a_aa_aa_aa_aa_a$, $0 \le a_i \le 9$ for all i=0,1,2,3,4 and $a_4 \neq 0$, such that $a_4 + a_3 + a_2 + a_1 + a_0 = 3t$, where t is an integer number. (The fact that n is an integer number is an implicit hypothesis because the concept of divisibility is defined only for integer numbers).
 - **B:** The number n is divisible by 3; that is, n=3s with s integer number. both parts of this proof, we can conclude that A = B.

ترجمه برای دانش آموز:

A set is an unordered collection of distinct objects. We use the notation $x \in S$ to mean "x is an element of S" and x∉S to mean "x is not an element of S". Given two subsets (subcollections) of U, X and Y, we say "X is a subset of Y", written $X\subseteq Y$, if $x\in X$ implies that $x\in Y$. Alternatively, we may say that "Y is a superset of X". $X \subseteq Y$ and $Y \subseteq X$ mean the same thing. We say that two subsets X and Y of U are equal if $X\subseteq Y$ and $Y\subseteq X$. We use braces to designate sets when we wish to specify or describe them in terms of their elements: $A=\{a,b,c\}$, $B=\{2,4,6,\ldots\}$. A set with k elements is called a k-set or set with cardinality k. The cardinality of a set A is denoted by |A|.

Since a set is an unordered collection of distinct objects, the following all describe the same 3-element set $\{a,b,c\}=\{b,a,c\}=\{c,b,a\}=\{a,b,b,c,b\}$.